Our Research
Structural biology of meiosis
Meiotic cell division is defined by a unique and highly dynamic programme of events that results in homologous chromosome segregation following crossover formation. In mammals, the telomeric ends of chromosomes become tethered to the nuclear envelope by the meiotic telomere complex, where they undergo rapid movements, driven by microtubule forces transmitted by the LINC complex, that facilitate the identification and alignment of homologous chromosome pairs through recombination. Once established, homologue chromosome pairs become synapsed along their length by the zipper-like assembly of the synaptonemal complex, which provides the unique three-dimensional architecture necessary for recombination intermediate resolution and crossover formation. Our research aims to uncover the structure, assembly mechanism and recombination function of the synaptonemal complex, the mechanistic basis of nuclear envelope tethering by the meiotic telomere complex and the mechanism of force transduction by the LINC complex. To achieve this, we adopt a structural biology approach of biophysics, crystallography and cryo-EM, coupled with collaborative structure-directed mutation in mouse meiosis. Ultimately, we aim to uncover how the mammalian synaptonemal complex, meiotic telomere complex and LINC complex operate together as an integrated molecular machine to achieve their essential functions of mammalian meiosis, and crucially how their dysfunction leads to human infertility, miscarriage and aneuploidy.